Readers’ wildlife photos

November 26, 2021 • 8:00 am

Here’s the first installment of rainforest photos from reader Athayde Tonhasca Júnior.  Click on the photos to enlarge them, and his notes and IDs are indented:

You asked for readers’ photos, so here’s a tour through the Brazilian Atlantic Forest.

Moth:

Access road:

Bad-tempered toad:

Black-faced hawk (Leucopternis melanops):

Bothrops sp. (fer-de-lance). Keep your distance!

Bromeliad:

Another bromeliad:

Cheeky lizard:

Forest:

Forest:

Fungus 1:

Fungus 2:

Fungus 3:

Readers’ wildlife photos

November 17, 2021 • 8:00 am

Today I’m going to gather the few singletons, doubletons, and tripletons sent in by readers. Although I like sets of photos of ten to a dozen or so, I do appreciate a good single wildlife photo. Here are some from diverse (I mean by that “different”) readers. Their captions and IDs are indented, and you can enlarge the photos by clicking on them.

Do sent in your photos, please; we’re running low again.

First, fungi by Alexandra Moffat:

White tree mushroom, Tremella fuciformis (?), New Hampshire hardwoods. When sunlit, an eye-catching white beacon in the woods. Not sure of the ID, an awful lot of similar fungi!!!   Huge fungi year around here.

From Ken Phelps, who calls this a “Roswell pear”.

Friends on Gabriola Island, just off Nanaimo, gave me a few pears last weekend. The Gulf Islands have an underlying vibe of getting-a-bit-geriatric woo, so it’s entirely possible that a Grey got waylaid in a New Mexican harmonic convergence and accidentally popped out here. Or something.

From Christopher Moss, “Apple Thief”.

I was just thinking my Russets are ripe enough to pick this weekend, when I see those scoundrels have got there first!

And from Joe McClain in Williamsburg, Virginia:

We had a mother Procyon lotor give birth to quadruplets here in the Blue Ridge of Virginia. My daughter once saw them walking, all in a line, at dusk. She involuntarily exclaimed at the cuteness of it all. The mother stopped abruptly to look at her, starting a chain reaction of raccoon-bumping. These creatures soon found our peach trees. So we named the mother Peaches and the babies Pitt, Fuzz, Pie and Cobbler. The one photo is of Pitt, Fuzz and Pie regaling themselves upon our peach crop. Cobbler separated from the rest of the family rather early and I think that is him or her on the deck of my office. I don’t know what happened to the rest of the family, but it’s a tough world around here for raccoons, with foxes, coyotes, dogs and cars taking their toll and farmers resenting attacks on chickens, etc.

Then there is a praying mantis on the siding near my beer cooler. Don’t know species.

And a stunned Sitta carolinensis. This white-breasted nuthatch hit the window of my office. I went out and picked it up, folding its wings back. He seemed just a bit dazed, so I put him down on the deck. After a minute of looking around, he hopped a couple times, then flew off.

 

Readers’ wildlife photos

October 1, 2021 • 8:00 am

I have a queue of photos, so if you haven’t seen yours yet, please be patient. And of course I can always use more.

Today’s photos are by Tony Eales from Queensland. His captions and IDs are indented, and you can enlarge his photos by clicking on them.

I’m headed to the outback next week so with luck I’ll have some cool things to share when I get back. For now I have a grab bag of reasonably recent shots of this and that.

I’ll start with a new mimic for me. This is one of several jewel beetles that mimic the presumably very unpalatable lycid beetles. This is the most widespread species being found in every mainland state of Australia, mainly across the southern half: Castiarina rufipennis.

And is the model, Porrostoma rhipidius. Very common in spring.

These are tiny Monomorium sp. known as Timid Ants. But they’re struggling mightily with this seed.

One of our common species of fish that lives in both brackish and fresh water. Pseudomugil signifer Pacific Blue Eye. They are a popular aquarium fish here and a member of the colourful family of Gondwanan and mostly Sahulian freshwater fish Melanotaeniidae, known commonly as Rainbowfish. Unfortunately, these blue-eyes are being driven out by the imported Gambusia mosquitofish. These Central American fish are livebearing and eat the scattered eggs of rainbowfish like Blue eyes as well as occupying the same niche.

As everyone should know by now, I love spiders. However, I’m also fascinated by the fungi that prey on them. This is probably Gibellula sp.

Finally, an orchid I’ve seen plenty of times in the rainforest near me but never caught flowering before. It is an epiphyte, Plectorrhiza tridentata, the Common Tangle Orchid.

Readers’ wildlife photos

August 14, 2021 • 8:00 am

Please send in your photos!

Today’s batch is quite diverse in content, and comes from reader Leo Glenn, whose notes are indented. You can enlarge the photos by clicking on them.

I haven’t been able to take many photos lately, and my archive is fairly disorganized, so here is a somewhat random collection of photos. The only thing tying them together, really, is that they were all taken within walking distance of my house in western Pennsylvania. I’ve also included a “macro” photo that you could use as a “What am I?” quiz, if you so desire. The subsequent photo is the reveal.  [JAC: I’ll put it below the fold.]

American giant millipede (Narceus americanus), a relatively common sight on my daily dog walk:

Gray treefrog (Dryophytes versicolor), so named because they can change color from gray to green or brown. Far more often heard than seen, this one was down near the ground and politely lingered long enough for me to take its picture:

Another organism with the species name versicolor, the Turkey Tail mushroom (Trametes versicolor)

Yellow morel (Morchella esculenta), from my secret morel patch:

Crown-tipped coral fungus (Artomyces pyxidatus):

Our mulberry tree had a bumper crop this year, which attracted many bird species, including this Black-billed cuckoo (Coccyzus erythropthalmus), seen here, though, on a neighboring red maple (Acer rubrum).

Red-headed bush cricket, also known as a Handsome trig (Phyllopalpus pulchellus):

Pennsylvania leatherwing, also called a goldenrod soldier beetle (Chauliognathus pensylvanicus):

And a photo from this past winter. Even the Eastern gray squirrels (Sciurus carolinensis) were social distancing:

Finally, here’s the photo for the “What am I?” quiz:

To see the reveal, click “read more”:

Continue reading “Readers’ wildlife photos”

Readers’ wildlife photos

June 9, 2021 • 8:00 am

Today’s diverse photos come from Ian Churchill, whose Flickr site is here. Ian’s captions are indented. Click the photos to enlarge them.

Amanita muscaria, [the “fly agaric”], Horsell Common, England:


Baby European Herring Gulls [Larus argentatus,]Wadars Wildlife rescue, Worthing, England:


Crocodile, Black River, Jamaica:


Damselfly, Woods Mill, England:


Deer, Petworth Park, England:

 

Iguana? Tulum, Mexico:


European Robin [Erithacus rubecula], Brighton, England:

 

Seals, Juneau, Alaska, US:

 

Grey Squirrel [Sciurus carolinensis] eating mealworms from bird feeder, Brighton, England:


Humpback Whale [Megaptera novaeangliae], Juneau, Alaska, US:

Nefarious fungus mimics a grass flower to facilitate its own transmission

February 14, 2021 • 12:30 pm

Some of the most fascinating observations in biology, at least to me, involve the comandeering of one species by a parasite, who take the host over, changing it in a way that facilitates the parasite’s own reproduction. “Zombie ants“, infected by a behavior-altering fungus, are one example, and some people think that the protozoan Toxoplasma gondii, which humans get from cat feces, changes the behavior of rats when it infects them, making the rats lose their evolved fear of cats. The infected rats then are more readily eaten by cats, thus facilitating the reproduction of the protozoan, which becomes infectious when it gets into the cats and exits through their feces. Any mutant protozoan with the tendency to make rats less afraid of cats will be more likely to be passed on, which of course is positive natural selection.  But in neither that case nor the case of zombie ants infected with fungus do we know exactly how the parasite commandeers the host and changes their behavior. Working that out will be a fascinating task.

Today we have another fungus that affects its host in a way detrimental to that host but good for the fungus. The system is described in a new paper in Fungal Genetics and Biology (click on screenshot below, full reference at the bottom), or find the pdf here.  There’s also a summary in Scientific American

Now there are a couple of cases known of fungi that actually take over a plant host’s development and produce pseudoflowers that attract insects. Those pseudoflowers, while made of plant material, are also covered with fungal hyphae. The fungus also somehow induces the plant to produce a nectarlike substance. Both the pseudoflower and nectar attract pollinating insects, who instead of getting pollen get covered with fungal spores. The spore-covered pollinators then move to a new infected plant. This is a way the fungus manages to disperse its genes and also (some fungi have “sexes” or mating types) effect matings with another fungus on another plant. It’s a form of fungal reproduction, just as pollination is a form of plant reproduction.

In today’s case we have something a bit different: the fungus, when infecting the plant, itself assumes the form of a flower that looks remarkably like the host flower. It also develops pigments that are known to attract insects, including those in the UV light spectrum. Finally, the fungus appears to emit volatile chemicals that are identical to some chemicals of the host flower that attract bees.

Did I mention that the fungus also sterilizes the host plant (a flowering grass), so that the fungus doesn’t compete with the grass flowers for pollinators?

Click to read:

The two species of grass that the fungus infects were found in western Guyana, and are “yellow-eyed grasses,” Xyris setigera and X. surinamensis. Both are infected with the fungus Fusarium xyrophlium, a new species described by these authors. When it infects the grasses, the fungus sterilizes them, so that they produce no flowers or mature fruit, and the fungus sets up a systemic infection of the grass plant. Infections are patchy in Guyana; not all grasses have them and most grasses don’t.

After a plant has been infected for a certain time, the fungal hyphae grow into a “pseudoflower” at the grass tip that is a remarkable mimic of the grasses’ own flowers. Have a look at this figure from the paper. The first three photos show the fungus “flower”, and only the last shows the grass’s own natural flower. Again, the faux flower in the three photos at the left is made of pure fungal hyphae; it’s not made of plant cells “directed” by the fungus to assume the configuration of a flower, as in other cases.

(From the paper): Fig. 1. Comparison of Xyris flower and Fusarium xyrophilum pseudoflowers collected in the Cuyuni-Mazaruni region of Guyana in 2010. (A) Young yellow-orange pseudoflower produced by F. xyrophilum emerging at tip of cone-like spike of Xyris surinamensis. (B) Mature pseudoflower of F. xyrophilum enveloping the entire X. surinamensis spike. (C) Longitudinal section of X. surinamensis spike showing partial fruit development in center and pseudoflower of F. xyrophilum. (D) Healthy yellow flower of X. surinamensis shown for comparison, with lateral petals and prominent erect hairlike staminodes. Scale bar: A–D = 5 mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Do the faux flowers attract insects? Yes, they were observed to attract small bees, though the flowers weren’t watched very long.

Do the bees carry spores that they get from trying to extract nectar from the fungus? We don’t know. The fungus is “self-sterile”, having different mating types, so it’s likely that these false flowers have evolved to not only disperse the fungus, but to facilitating its mating, since the spore-laden bee would likely be duped again and, in so doing, bring together two spores that could effect a mating.

Do the same bees pollinate the real flowers and the fake ones? That’s essential, for the mimicry involves duping the regular pollinators. Again, we don’t know. Note, though, that the faux flower has the same general shape and color as the real flower.

It’s interesting to note that, besides sterilizing the grass, the fungus seems to have no other detrimental effect on it. That’s what the fungus “wants,” of course, for its propagation depends on not killing off the grass, which is a perennial.

Bees not only see in the visible light spectrum, but also in the UV. The authors extracted pigment compounds from the fungus and found that there were indeed pigments in them that fluoresce in the UV spectrum. Thus bees could see more than just what we do. But we don’t know how the faux fungus flowers look to the bees, or whether bee vision makes the faux flowers resemble the real grass flowers. (There are many unanswered questions raised by this study.)

Finally, the authors looked at the volatile compounds of the fungus and flowers to see if they had anything in common; that is, was the fungus mimicking the odor as well as the appearance of the flower? Because the authors couldn’t get back to Guyana because of the pandemic, they used a related flower, X. laxifolia from North Carolina, compared to the lab-cultured fungus. Gas chromatography revealed only one volatile compound in common between the fungus and the grass flower: 2-ethylhexanol. This compound, however, is known to be a fairly powerful attractant of bees.

While many questions remain hanging, they can in principle be answered, and this paper describes a unique system: another weird way evolution works.  Here are some of the questions remaining:

a.) Did the fungus independently evolve its ability to produce faux flowers on both species of grass? (I would guess not.)

b.) Do the pollinators really move spores between infected grasses? (My guess would be yes; why else would the fungus evolve such an elaborate ability to make mimetic flowers?)

c.) What it is about infecting a grass that makes the fungus suddenly able to form flower-like shapes? Does some compound or gene in the grass itself induce the fungus to do this?

d.) How similar does the grass flower appear to the fungus “flower” to the eye of a bee?

e.) What other compounds of the fungus “flower” attract insects, and are they similar to odorants from the grass flower?

As Orgel’s Second Rule of Biology states, “Evolution is cleverer than you are.” And in this case it’s been very clever!

h/t: Jean

____________________

Laraba, I., S. P. McCormick, M. M. Vaughan, R. H. Proctor, M. Busman, M. Appell, K. O’Donnell, F. C. Felker, M. Catherine Aime, and K. J. Wurdack. 2020. Pseudoflowers produced by Fusarium xyrophilum on yellow-eyed grass (Xyris spp.) in Guyana: A novel floral mimicry system? Fungal Genetics and Biology 144:103466.

Readers’ wildlife photos

February 6, 2021 • 8:00 am

Arthur Williams sends us a rarity here: pictures of fungi. These come from Australia, and we have no identifications. Arthur’s notes are indented, and you can enlarge the photos by clicking on them:

How about a few fungi?

All of these were spotted on a single short walk from Durras North to Depot Beach on the south coast of NSW. In fact most were seen within 500 metres or so from Point Upright.  They ranged from tiny (the orange fungus on the tree) through to 20cm tall, and with caps up to 30cm diameter.

Other than that, I don’t know anything about them. I was just fascinated by the variety of forms, sizes and colours to be found in such a small area of bush. I am however hoping to improve my fungus knowledge at a workshop at Mulligan’s Flat in Canberra in May!

 

Readers’ wildlife photos

November 18, 2020 • 8:00 am

Today’s reader photos are of fungi, and come from reader Rik Gern, who adds an artsy interpretation. His captions and ID’s are indented.

Here are some submissions for your Readers’ Wildlife Pictures section.

I’ve held off on sending these for a while because I’m having a devil of a time identifying genus and species. Believe me, I’ve spent hours searching images for potential matches, but if I’ve learned one thing, it’s that the world of mushrooms is vast. Talk about your endless forms most beautiful!

I’ll make a stab at the genera of three of the four types represented here:

The first two look like they might be of the genus Panaeolina (foenisecli?). They were growing in rotting leaves in central Texas in the autumn on a misty day, if that helps with identification.

The third picture was taken on the same day in the same location, a few feet from the first mushrooms, but these were growing from a fallen tree limb. Until I tried to look up the Latin binomials I had thought of them as cremé brûlée mushrooms, but I seriously doubt that’s what they’re called. My best guess is Galerina marginata.

The big spongy looking mushrooms were also found in central Texas, although these were taken on a cool Spring morning after a few rainy days, and were growing in the grass. They look like some kind of Boletus. They were partially covered with a soft white mold which is hard to see in the pictures, but looked like snow or frosting from other angles. A fungal fungal infection? One of the mushrooms looks like it has a bite taken out of it, but I wonder what would leave marks like that?

The pictures in the next set were taken in northern Illinois in the fall. These mushrooms were growing on a tree. I apologize for not being able to come up with a latin name for even the genus, but after many searches, the only comparable images I could find were stock photos that didn’t provide any information.

The Boletus with the “bite” taken out of it is the basis for the first–I don’t know what you’d call it–digital distortion, “Necro Borg: Resisting Assimilation”. I worked on this as news of COVID 19 was just starting to spread, and I guess I was picking up on a sense of doom and gloom and sort of an ambient ennui. It kind of gives me the creeps and I’m glad I’m not feeling that way now! (Exercise is your friend!)

The close-up of the mushrooms from Illinois is the basis for the second digital distortion, “Virus X: The Fear Factor”. This was also done right as the world was starting to shut down and there was this feel of a spreading biological menace and a spreading social isolation to combat the menace. The other thing spreading seemed to be fear, for some fear of the coronavirus, for some fear of the containment and isolation, for many, both. Maybe there are two pandemics, one biological and one psychological?

 

 

Readers’ wildlife photos

July 15, 2020 • 7:45 am

Today’s photos come from two sources. First, a fly from Diana MacPherson.

Hi Jerry, below are some images I took of a deer fly (Chrysops excitans) that rested for quite a long time on my glass table outside this evening. I took various angles but I think the side angle is the best even though the wings look rather pretty reflecting the colours above in the back angle.

Four photos form Arthur Williams of Ohio, whose captions are indented:

I have been combing my little sylvan suburban wilderness to find the nest of the red-shouldered hawksButeo lineatus, that I knew was in the area based on the everyday appearance of mom or dad in our copse of trees out back. I finally found it hiding in plain sight in a neighbor’s maple tree, aggressively pruned by the power company to avoid the lines that crisscross the half-hearted deciduous jungles of southwestern Ohio. The juvenile is on the left, I think, and the very next day he fledged, as I haven’t seen him back since, much to my chagrin.

The bug-eyed Northern cardinal, Cardinalis cardinalis, is in our Canadian CherryPrunus virginiana, getting his carotene fix from the red berries that are nearly gone. The sharp-eyed arborist might also note a third species in the tree or at least its extended phenotype. The fungus, Apiosporina morbosaproduces the scabrous welts better known as “Black Knot” on the branches of susceptible fruit trees and is very difficult to eradicate; this explains the shabby condition of the tree.

The honey bees Apis mellifera are swarming in our hedge maple treeAcer campestre; it was an awesome site to see thousands of bees swarming their new queen, so intent on her that the whole swarm could be coaxed into a box and carted off to form a new colony. We contacted a local beekeeper’s association to see if they wanted to find the bees a new home, but they had moved on before they could arrive to collect them.

 

The last shot is of my little street, ordinary in every way, except when it’s bathed in the lunacy of a full moon, with the smoky mists of a summer downpour hanging in the air, filtering the reflected moonbeams into surreal pastel blues that the thousands of screaming frogs (species unknown) seem to enjoy. That there is so much wildlife in this little patch, completely incurious about some damned virus or a certain bloviating orange barnacle, keeps me centered and just barely sane.

 

Readers’ wildlife photos

June 6, 2020 • 8:00 am

During the pandemonium surrounding the entry of Honey and Dorothy’s broods into Botany Pond at the beginning of May, reader David Campbell sent me some wildlife pictures. And, as sometimes happens, I forgot to put them in the “readers’ wildlife” folder. He reminded me, and, with apologies, here are some late photos. David’s captions are indented:

Descriptions follow.  The Cannon Spring photo [last one] is not the highest quality but the situation was so unique that I thought some of your readers would be interested.

Dog Puke Slime Mold (Fuligo septica) A plasmodial slime mold that frequently occurs on mulch around plants after heavy rains.  The gross factor made it a big hit with my students when it appeared in the ornamental plantings outside my classroom.  It has no odor.  I am waiting for someone to come up with a Hairball Slime Mold.

Sailfin Catfish, Pterygoplichthys sp. Photographed in Silver Glen Springs in the Ocala National Forest of Florida.  Sailfins are exotic invasives that I have seen in a lot of springs in the St. Johns River basin.  Two species of Pterygoplichthys are found in Florida and frequent hybridization makes identification to species difficult.  Sailfin catfish are edible but they are encased in a hard, bony armor so cleaning them is difficult.  Some people simply cook them “in the shell” and peel them apart.

Blue Crab (Callinectes sapidus).  Blue crabs are anadromous, occurring in both fresh and salt water.  This one was photographed about 15 feet below the surface at the mouth of a freshwater spring in the Ocala National Forest.

Florida Gar (Lepisosteus platyrhincus) Gars look intimidating but are not aggressive toward swimmers.  This meter long fish swam over to examine me and then went back under nearby overhanging vegetation to do what gar seem to spend most of their time doing, sitting motionless in the water column.

Green Fly Orchid (Epidendrum magnoliae).  A native epiphytic orchid that is found as far north as North Carolina.  Different plants bloom at different times of the year, sometimes as late as December in Florida.  The flowers are quite small and easily overlooked but worth the effort to find.

Sidewinder (Crotalus cerastes).  Photographed in Arizona.  This is one of the smaller rattlesnakes and this individual was typically nervous and aggressive.  The right infrared sensing pit is visible forward of the eye.  Like many other pit vipers, sidewinders hunt at night and use infrared radiation from homeothermic prey in the final localization stage of hunting.

Monarch Butterfly (Danaus plexippus).  Two photos of a chrysalis, the pupa of this familiar butterfly.  These photo were taken three days after pupation.  The first photo was taken using conventional front lighting.  Clearly visible in the “skin” of the pupa are the outlines of wings, antenna, respiratory spiracles, and abdominal segmentation.  The second photo, taken during the same session, shows the chrysalis backlit.  Notice that the lower two thirds of the pupa is translucent with little or no visible structure.  Small clusters of cells are already organizing development of major butterfly organs and tissues from the products of broken down larval tissues.

Unicorn Caterpillar Moth (Schizura unicornis).  This is one of the more unusual Notodontidae caterpillars and was found feeding on an antique rose in the garden.  I moved it to a less valuable Cherokee rose where it continued feeding.  The adult is a nondescript little moth with a 25-35 cm wingspan.

Cannon Springs, Ocklawaha River, Florida.  This is a grab shot of something that is only visible for a month or two every three to four years.  Back in the 1960s the Army Corps of Engineers conceived and began construction on a barge canal connecting the Gulf of Mexico with the Atlantic Ocean, cutting across the Florida peninsula around the same latitude as Ocala.  One of the most beautiful rivers in Florida, the Ocklawaha was dammed to provide a wider and deeper channel for barges using the canal.  The resulting reservoir covered more than a dozen freshwater springs including several large ones.  President Nixon halted the canal construction before it could be finished but the dam remains and attempts to dismantle it and begin restoring the river have failed due to political resistance.

Every three to four years the Corps draws down the water level in the reservoir and, for a few weeks, several of the “lost” springs reappear.  Cannon is one of them.  I had planned on snorkeling here to photograph the fish and spring but I was the only human within miles and I never swim alone, especially when there is a five foot alligator sunning on the bank.  This photo was taken by holding the camera underwater as I floated nearby.  The larger of the two spring basins is in the background including the two vents where water flows out fast enough to keep the limestone clear of debris.  Also visible are several species of fish including lake chubsucker (Erimyzon sucetta), largemouth bass (Micropterus salmoides), chain pickerel (Esox niger), and bluegill (Lepomis macrochirus).  The spring is now submerged beneath four additional feet of murky brown water and won’t be visible again until at least 2023.

OLYMPUS DIGITAL CAMERA